Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hai-Bo Wang,* Yue-Qing Pu, Jia-Hui Chen and Jin-Tang Wang

Department of Applied Chemistry, College of Science, Nanjing University of Technolgy,
Xinmofan Road No. 5 Nanjing, Nanjing 210009,
People's Republic of China

Correspondence e-mail:
wanghaibo@njut.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.055$
$w R$ factor $=0.168$
Data-to-parameter ratio $=14.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Methyl 2-\{[3-(2-methyl)phenyl-1,2,4-oxadiazol-5-yl]methoxy\}phenylacetate

The title compound, $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$, was synthesized by the reaction of methyl (2-hydroxyphenyl)acetate and 3-(2-meth-yl)phenyl-5-chloromethyl-1,2,4-oxadiazole. $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$-type hydrogen bonds are observed in the molecular structure. In the crystal structure, there are weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

Comment

1,2,4-Oxadiazole derivatives are of great interest because of their biological properties. Some derivatives of 1,2,4oxadiazoles have intrinsic analgesic (Terashita et al., 2002), anti-inflammatory (Nicolaides et al., 1998) and antipicornaviral (Romero, 2001) properties, and show high efficacy as agonists [e.g. for muscarinic (Macor et al., 1996), adrenergic (Quagliato \& Andrae, 2002) and 5-hydroxy-tryptamine (Gur et al., 2001)] and antagonists [e.g. for angiotensin (Naka \& Kubo, 1999) and adhesion agents (Juraszyk et al., 1997)] for different receptors. We report here the crystal structure of the title compound, (I).

(I)

The molecular structure of (I) is shown in Fig. 1, and selected bond lengths and bond angles are given in Table 1. The C4-C9 and C13-C18 benzene rings form dihedral angles

Figure 1
A view of the molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines.

Received 1 April 2005 Accepted 13 April 2005 Online 23 April 2005

Figure 2
The short $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (dashed lines) in the crystal structure of (I).
of $11.3(2)$ and $13.7(1)^{\circ}$, respectively, with the oxadiazole ring.
In the molecular structure, $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ type hydrogen bonds are observed. In the crystal structure, the molecules are linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (Table 2 and Fig. 2), leading to the formation of a threedimensional network.

Experimental

Methyl (2-hydroxyphenyl)acetate (20 mmol) was dissolved in acetone (20 ml) and potassium carbonate (30 mmol) was added in one portion. 3-(2-Methyl)phenyl-5-chloromethyl-1,2,4-oxadiazole $(20 \mathrm{mmol})$ in acetone $(20 \mathrm{ml})$ was added to this mixture. The resulting mixture was refluxed for 6 h and then concentrated under reduced pressure to afford crude compound (I). Pure compound (I) was obtained by recrystallization from ethyl acetate (m.p. 339-341 K). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution. Spectroscopic analysis: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right.$, p.p.m.): 7.99-8.00 $(m, 1 \mathrm{H}), 7.37-7.39(m, 1 \mathrm{H}), 7.31-7.32(m$, $2 \mathrm{H}), 7.23-7.29(m, 2 \mathrm{H}), 6.99-7.03(m, 2 \mathrm{H}), 5.37(s, 2 \mathrm{H}), 3.74(s, 2 \mathrm{H})$, $3.69(\mathrm{~s}, 3 \mathrm{H}), 2.62(s, 3 \mathrm{H})$.

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$
$M_{r}=338.35$
Monoclinic, $P 2_{1} / c$
$a=11.444(2) \AA$
$b=7.9540(16) \AA$
$c=19.356(4) \AA$
$\beta=102.83(3){ }^{\circ}$
$V=1717.9(6) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& D_{x}=1.308 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } \alpha \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \text { reflections } \\
& \theta=9-12^{\circ} \\
& \mu=0.09 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Rod, colourless } \\
& 0.40 \times 0.20 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

Data collection

Enraf-Nonius CAD-4	$\theta_{\max }=26.0^{\circ}$
\quad diffractometer	$h=0 \rightarrow 14$
$\omega / 2 \theta$ scans	$k=0 \rightarrow 9$
3535 measured reflections	$l=-23 \rightarrow 23$
3361 independent reflections	3 standard reflections
1923 reflections with $I>2 \sigma(I)$	every 200 reflections
$R_{\text {int }}=0.033$	intensity decay: none

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.08 P)^{2}\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.20 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.20 \mathrm{e}^{-3}
\end{aligned}
$$

$w R\left(F^{2}\right)=0.168$
$S=1.03$
3361 reflections
227 parameters
H-atom parameters constrained
Extinction correction: SHELXL97
(Sheldrick, 1997)
Extinction coefficient: 0.014 (2)

Table 1
Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right)$.

O1-C2	$1.324(3)$	$\mathrm{N} 2-\mathrm{C} 11$	$1.282(3)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.437(4)$	$\mathrm{N} 2-\mathrm{C} 12$	$1.386(3)$
$\mathrm{O} 2-\mathrm{C} 2$	$1.210(3)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.498(4)$
$\mathrm{O} 3-\mathrm{C} 9$	$1.381(3)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.502(4)$
O3-C10	$1.405(3)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.483(3)$
O4-C11	$1.329(3)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.470(3)$
O4-N1	$1.418(3)$	$\mathrm{C} 18-\mathrm{C} 19$	$1.497(4)$
N1-C12	$1.297(3)$		
C2-O1-C1	$116.9(3)$	$\mathrm{O} 3-\mathrm{C} 9-\mathrm{C} 4$	$114.2(2)$
C9-O3-C10	$119.53(19)$	$\mathrm{O} 3-\mathrm{C} 10-\mathrm{C} 11$	$107.0(2)$
C11-O4-N1	$105.99(18)$	$\mathrm{N} 2-\mathrm{C} 11-\mathrm{O} 4$	$114.0(2)$
C12-N1-O4	$103.4(2)$	$\mathrm{N} 2-\mathrm{C} 11-\mathrm{C} 10$	$127.8(2)$
C11-N2-C12	$102.8(2)$	$\mathrm{O} 4-\mathrm{C} 11-\mathrm{C} 10$	$118.2(2)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{O} 1$	$123.0(3)$	$\mathrm{N} 1-\mathrm{C} 12-\mathrm{N} 2$	$113.8(2)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	$124.1(3)$	$\mathrm{N} 1-\mathrm{C} 12-\mathrm{C} 13$	$124.4(2)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	$112.9(3)$	$\mathrm{N} 2-\mathrm{C} 12-\mathrm{C} 13$	$121.8(2)$
C2-C3-C4	$113.0(2)$	$\mathrm{C} 14-\mathrm{C} 13-\mathrm{C} 12$	$116.8(2)$
C9-C4-C3	$119.5(2)$	$\mathrm{C} 18-\mathrm{C} 13-\mathrm{C} 12$	$123.8(2)$
C5-C4-C3	$123.3(3)$	$\mathrm{C} 17-\mathrm{C} 18-\mathrm{C} 19$	$118.7(3)$
C8-C9-O3	$124.1(2)$	$\mathrm{C} 13-\mathrm{C} 18-\mathrm{C} 19$	$124.2(2)$

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).
Cg 1 is the centroid of the C4-C9 ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 B \cdots \mathrm{O} 2^{\mathrm{i}}$	0.96	2.53	$3.480(4)$	169
$\mathrm{C} 8-\mathrm{H} 8 A \cdots \mathrm{O} 2^{\mathrm{ii}}$	0.93	2.54	$3.365(3)$	149
$\mathrm{C} 14-\mathrm{H} 14 A \cdots \mathrm{~N} 2$	0.93	2.47	$2.839(3)$	104
$\mathrm{C} 19-\mathrm{H} 19 C \cdots \mathrm{~N} 1$	0.96	2.54	$2.880(4)$	101
$\mathrm{C} 10-\mathrm{H} 10 A \cdots \mathrm{Cg} 1^{\mathrm{ii}}$	0.97	2.82	$3.592(3)$	138

Symmetry codes: (i) $-x+1, y-\frac{1}{2},-z+\frac{1}{2}$; (ii) $-x+1,-y+1,-z$.
All H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.97 \AA$. They were included in the ridingmodel approximation, with $U_{\text {iso }}(\mathrm{H})=1.2$ or 1.5 (methyl) times $U_{\text {eq }}(\mathrm{C})$.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXL97.

References

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Gur, E., Dremencov, E., Lerer, B. \& Newman, M. E. (2001). Eur. J. Pharmacol. 411, 115-122.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.

organic papers

Juraszyk, H., Gante, J., Wurziger, H., Bernotat-Danielowski, S. \& Melzer, G. (1997). PCT Int. Appl. No. 9744333.

Macor, J. E., Ordway, T., Smith, R. L., Verhoest, P. R. \& Mack, R. A. (1996). J. Org. Chem. 61, 3228-3229.
Naka, T. \& Kubo, K. (1999). Curr. Pharm. Des. 5, 453-472.
Nicolaides, D. N., Fylaktakidou, K. C., Litinas, K. E. \& Hadjipavlou-Litina, D. (1998). Eur. J. Med. Chem. 33, 715-724.

Quagliato, D. A. \& Andrae, P. M. (2002). PCT Int. Appl. WO, 0206250.
Romero, J. R. (2001). Expert Opin. Invest. Drugs, 10, 369-379
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Siemens (1996). SHELXTL. Version 5.06. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Terashita, Z., Naruo, K. \& Morimoto, S. (2002). PCT Int. Appl. WO, 0260439.

